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Introduction

With the increase in congestion on America’s roadways, travel time reliability has become a
more critical measure of performance in recent years. Although measures of travel time
reliability on freeways and arterials are receiving increased attention, transit travel time
reliability often continues to be viewed by transit agencies solely on the basis of overall route-
level on-time performance, if it is measured at all.

It is imperative to improve the reliability of public transportation, because the societal benefits
of public transportation are numerous. Transit provides mobility to those who cannot or prefer
not to drive, including access to jobs, education and medical services. Transit reduces
congestion, gasoline consumption and the nation’s carbon footprint (American Public Transit
Association 2008). In 2007, public transportation saved 646 million hours of travel delay and
398 million gallons of fuel in the U.S., resulting in a savings of $13.7 billion in congestion costs
(Schrank and Lomax 2009). Use of public transportation reduced U.S. CO2 emissions by 6.9
million metric tons in 2005 (Davis and Hale 2007). While hybrid and electric vehicle
technologies can reduce the carbon-footprint of single-occupancy vehicles, they cannot
compete with public transit in reduction of traffic and promotion of compact, sustainable
communities rather than low-density sprawl. By helping travelers move from single-occupancy
vehicles to transit systems, communities can reduce traffic congestion and the environmental
impact of transportation. However, from a customer perspective, a mobility choice is only a
choice if it is fast, comfortable and reliable. Improvements to transit reliability measurement
can lead to better evaluation of potential transit improvements that can increase ridership and
load factors (Perk, Flynn et al. 2008).

Therefore, this research will investigate the causes of travel time variability in transit by
comparing the runtime deviations and on-time performance of routes and portions of routes
based on specific characteristics of the service (right-of-way, stop spacing, load factors, etc).
The primary benefit from the comparison of on-time performance based on route
characteristics is to allow transit agencies to prioritize infrastructure and other improvements
based on their resulting impact on reliability.

Background

Travel Time Reliability

Transportation system customers need consistency in their daily travel times to enable them to
plan their daily activities, whether that is a commuter on their way to work, a company setting
up delivery schedules for just-in-time manufacturing, or a transit agency scheduling coaches
and drivers. A frequent user of a facility can become accustomed to the typical travel time, but
their continuing concern is punctuality, or the deviations from the expected travel time. A
journey to work travel time that takes 20 minutes one day and 40 minutes another day takes an
average of 30 minutes, but the individual making this trip would either have to plan for the 40



minute trip or plan for 30 minutes and be late certain days. The consequences of being late
repeatedly could mean costs anywhere from daycare fines to the loss of a job.

To understand the effects such variability has on transportation customers, performance
measures must take typical travel times into account as well deviation from those typical travel
times. Measurement of typical travel time and deviation from that typical travel time is needed
for a wide variety of operational decisions, input to modal choice models and decisions, analysis
of the effectiveness of system improvements and measurement of the impact of congestion
mitigation measures. Travel time reliability on freeways has recently become the subject of
much research, including investigations of the value of reliability (Bates, Polak et al. 2001;
Brownstone and Small 2005) and development of reliability performance measures (Lomax,
Schrank et al. 2003; Cambridge Systematics, Dowling Associates et al. 2008; Lyman and Bertini
2008). The inclusion of travel time reliability in planning and operations analysis is becoming a
critical element of understanding the customer perspective. Some travel behavior studies have
even suggested that reliability in travel is more important than travel time (Rietveld, Bruinsma
et al. 2001; Daskalakis and Stathopoulos 2008).

As we strive to figure out how to achieve a sustainable transportation system, further research
into understanding reliability and how it influences mode choice is needed. Reliability research
must include measures of reliability that can be used across modes, ways to incorporate travel
time reliability into travel demand forecasting and analysis of competitiveness of modes
partially based on travel time reliability.

Transit Travel Time Reliability

Currently, the predominant performance measures collected in the transit industry are used to
evaluate an agencies business. Measures collected for the National Transit Database, the
largest national source for performance data, mostly include measures related to cost and
utilization (Federal Transit Administration). The Transit Capacity and Quality of Service Manual
(TCQSM), first produced in 1999, was an attempt by the industry to provide a guide for
measurement of the quality of service provided to the passengers (Kittelson & Associates
1999). Quality of Service is defined as “the overall measurement of perceived performance of
transit service from the passenger’s point of view.” The TCQSM breaks quality of service into
two areas, availability and comfort & convenience, and further describes those areas as shown
in Table 1 (Kittelson & Associates, KFH Group et al. 2003).

Table 1 Fixed-Route Transit Service Measures

\ Transit Stop Route Segment System
Availability Frequency Hours of Service Service Coverage
Comfort & Passenger Load Reliability Transit-Auto
Convenience Travel Time

Source: Transit Capacity and Quality of Service Manual, 2" Edition, Exhibit 1-1



Reliability in transit, as defined by the TCQSM, has two components, the amount of time
passengers spend waiting at a stop for their transit vehicle and the consistency of their arrival
time at their destination. The perceived and actual reliability of service affects passenger
choices about the time they will arrive at the stop and the trip they will choose to give them
buffer for their destination. Travel time reliability is influenced by a number of factors, some of
which are controlled by the transit agency, such as vehicle and maintenance quality, vehicle and
staff availability, schedule achievability, and operations control strategies; some of which are
partially controlled by the transit agency, such as differences in operator driving skills, route
length and the number of stops and transit preferential treatments; and some of which are out
of the agencies control, such as background traffic conditions, road construction, weather,
evenness of passenger demand, and wheelchair lift and ramp usage (Kittelson & Associates,
KFH Group et al. 2003).

Transit travel time reliability can therefore be improved by changes and improvements that
take these factors into account. Agencies frequently adopt measures such as transit signal
priority, proof-of-payment fare collection, increased layover times and operations control to
improve travel times and reliability. The Transportation Research Board has published an entire
series of documents about the effects of such changes called TCRP 95, Traveler Response to
Transportation System Changes (Transportation Research Board 2003). The documents detail
experiences with various improvements a transit agency can undertake and the gives
elasticities for the resulting ridership. It includes items such as parking, transit-oriented
development, road pricing, transit information, scheduling and others.

The two most common measures of fixed-route service reliability that passengers can relate to
are on-time performance (or schedule adherence) and headway adherence. Transit agencies
also often measure missed trips and distance between mechanical breakdowns, but these
measures are not as readily seen by the passenger. On-time performance is a measure of
percentage of on-time vehicles and is used by agencies for service operating on schedules,
which is usually service with headways more than 10 minutes. Many agencies use the
measures outlines in the TCQSM to analyze on-time performance (Perk, Thompson et al. 2001;
El-Geneidy, Horning et al. 2007). Agencies differ, however, in their definition of on-time, with
Canadian agencies typically having shorter windows for on-time performance (Benn 1995;
Canadian Urban Transit Association 2001). King County Metro defines on-time as 1 minute
early to 5 minutes late. More than half of the Canadian agencies only allow 3 — 4 minutes late
with no early arrivals.

Headway adherence is used for service operating headway-based, typically for headways less
than 10 minutes. Headway adherence uses the coefficient of variation of headways, which is
equal to the standard deviation of headway deviations (actual headway minus the scheduled
headway) divided by the mean scheduled headway. Both measures are graded similar to the
Highway Capacity Manual guidelines with LOS A to LOS F. Some agencies also monitor travel
speeds as a measure of reliability (Jacques and Levinson 1997) and the MTA in New York uses a
specific measure of passenger wait assessment (New York Metropolitan Transit Agency).



Automatic Vehicle Location

Automatic Vehicle Location (AVL) data is collected by many transit agencies to allow real-time
tracking of transit vehicles for supervision, safety and customer information. The data is
typically archived for use in planning applications such as schedule adjustment and analysis of
route performance. AVL data is frequently used by agencies to track on-time performance, also
referred to as schedule adherence. As described above, on-time performance is the most
frequently used measure of reliability for schedule-based transit service. Headway adherence
is the most frequently used measure of reliability for headway-based service.

TCRP 113, entitled “Using Archived AVL-APC Data to Improve Transit Performance and
Management, details the uses of archived automatic vehicle location data for planning,
scheduling and performance measurement applications (Furth, Hemily et al. 2006). One major
advantage of using AVL data is the ability to focus on extreme values in travel time, such as 95t
percentile travel time, that are frequently used in travel time reliability analysis. Therefore,
using AVL data has become a major asset in the measurement of on-time performance,
schedule adherence and other travel time reliability measures for transit service.

Although many newer AVL systems are GPS based, the current King County Metro (KCM) AVL
system is a sign post beacon and dead reckoning system. This older type of AVL system was
implemented before the US government began unscrambling military-based GPS signals.

KCM'’s AVL system uses radio emitters (beacons) to serve as fixed-point location devices
throughout the system. When a bus passes a beacon, its Mobile Data Terminal (MDT) on-board
relays the bus number, the mileage and the current time to the beacon. The Data Acquisition
and Control System (DACS) records this information and relays it for use in real-time
supervision of the system. Between beacons, the MDT uses the odometer-based dead
reckoning to determine the location of the vehicle.

The shortcomings of this type of system stem from the route that the bus must follow in order
for data to be recorded. If the bus does not follow its assigned routing, data will not be
collected about the vehicle’s location. Therefore, with any kind of route deviation, such as
alternate routings due to special events or weather, the vehicle is lost to the system. No real-
time information can be provided to transit operations or to the public and no data can be
stored for performance monitoring. In addition, the system may provide inaccurate data at trip
terminals, wear and tear and topography may affect the mileage, and schedule adherence can
only be tracked at the scheduled timepoints. For this reason, KCM is upgrading to a GPS-based
system in the next few years.

In the meantime, KCM’s current AVL system can be used for analysis on a timepoint basis for
routes which are running on their usual pattern. Buses that are rerouted for special events or
adverse weather are removed from the data. KCM’s AVL system has 319 radio emitters
throughout the system. Routes pass up to 16 emitters per trip, which means data can be
provided at up to 16 scheduled timepoints per trip. However, most routes pass emitters and
record at 5 to 9 timepoints per trip.



Related Work using AVL Data

Many transit agencies use AVL data to evaluate their bus operations. In most cases, routes are
evaluated in their entirety in order to adjust schedules and layovers to account for variability.

In both Portland and Chicago, the agencies are using AVL data to measure their performance on
a system, route and even a stop level with the intent of recommending improvements to the
service (Bertini and El-Geneidy 2003; Hammerle, Haynes et al. 2005). Many agencies also use
AVL data to monitor their systems in real-time to respond to reliability issues (Furth, Hemily et
al. 2006; Pangilinan, Wilson et al. 2008). Strathman and Kimpel used Portland’s AVL and APC
data to verify that reliability in the form of headway deviations are the primary cause of
overloaded buses (Strathman, Kimpel et al. 2003). However, little research exists about the
causes of the variability using AVL data.

A few studies have been done using AVL data to investigate the before and after effects of
specific travel time and travel time reliability improvements. One study in Portland looked at
the effects of bus stop consolidation using AVL and APC data, finding that combining stops had
no significant effects on ridership, but running times were improved (El-Geneidy, Strathman et
al. 2006). Similar studies were done in both Portland and Seattle to investigate the
effectiveness of transit signal priority looking at AVL data before and after implementation
(King County DOT Speed & Reliability Program 2002; Kimpel, Strathman et al. 2005). Both
found that the improvements in travel time variability were mixed.

There are several factors widely believed to impact travel time reliability in transit and research
about their impact has been undertaken for decades. In 1976, Sterman and Schofer found that
the length of route had the biggest impact on reliability (Sterman and Schofer 1976). Levinson
recommended minimizing the number of stops and speeding up fare collection (Levinson 1983),
as well as minimizing the impact of traffic congestion (Levinson 2005). Abkowitz and Tozzi also
summarized that traffic conditions and dwell time at stops were major factors in headway
variation (Abkowitz and Tozzi 1987). More recently, Chen et al found a correlation between
reliability and route length, headways, and exclusive bus lanes in China (Chen, Yu et al. 2009).
Research conducted in the Netherlands showed the importance of taking reliability into
account when planning the line length and stop spacing of a transit service (Oort and Nes
2008).

Using AVL data for travel time reliability research is ideal because of the large sample size
available, which is necessary to look at extreme values (Furth and Muller 2007). However,
because the widespread use of AVL is relatively new, few studies have been done to date
(Okunieff 1997; Parker 2008). Strathman, et al. looked at the effects that the driver has on the
reliability of the transit system in Portland (Strathman, Kimpel et al. 2002). They found that the
operator had a significant effect on running time variation, but the only operator characteristic
that was significant was years of experience. One study in Twin Cities, Minnesota, did a
microscopic analysis of the reasons behind performance and reliability issues using regression
models to predict run time, run time deviation, headway deviation, and coefficient of variation
of run time (El-Geneidy, Horning et al. 2008). The authors used length of route, driver



experience, number of stops served, and passenger activity in their multivariate regression
model. The data was only for one route however and no stop-level data was used.

Problem Statement

With the increase in congestion on America’s roadways, travel time reliability has become a
more critical measure of performance in recent years. Although measures of travel time
reliability on freeways and arterials are receiving increased attention, transit travel time
reliability often continues to be viewed by transit agencies solely on the basis of overall on-time
performance. Therefore, this research will be used to increase knowledge about the causes of
travel time variability in transit by comparing the on-time performance and runtime deviation
of routes and portions of routes based on specific characteristics of the service (right-of-way,
stop spacing, load factors, etc).

Research Objectives

This research strives to answer three related questions:

1. What are the characteristics of route segments where travel times (as measured by
runtime) are the least variable?

2. What are the characteristics of route segments where drivers are least likely to fall
behind?

3. What are the characteristics of route segments where drivers are most likely to be able
to catch-up if they have fallen behind schedule?

Method of Analysis

The basis for this study will be the King County Metro (KCM) Automatic Vehicle Location (AVL)
data described in the background section. This data is archived by KCM for the use in transit
planning applications. Examples of the use of this data are before and after studies of transit
signal priority projects or the tracking of on-time status of the system over time. In addition,
this data is used by Metro on a route by route basis to decide when additional time should be
added to a schedule to improve on-time performance for a particular trip.

For this analysis, | have been working with John Toone and Sidney Quach of KCM to access the
Speed and Reliability Analysis (SandRA) database currently under development. SandRA is an
SQL-based data warehouse that consolidates data from multiple departments within KCM by
linking the data and matching it to a common framework. The initial implementation of
SandRA includes data from the AVL system, the Transit Enterprise Database (TED, which
includes KCM scheduling data output from HASTUS) and TNET (the King County regional GIS



system). In addition, KCM has made the Automatic Passenger Counting (APC) system data
available for the project. Approximately 15 percent of the vehicles in KCM'’s fleet are equipped
with APC and these vehicles are rotated throughout the system on random basis.

Using the AVL data and schedule data, the deviation from schedule can be determined for
every route in the system for every trip that route makes and for every timepoint within that
trip. This data on deviation from scheduled timepoints has been linked to the other data
available through the links in SandRA to determine the impact that various characteristics of
the routes and stops have on the travel time variability.

In addition to the AVL, APC, schedule and GIS data, KCM provided data on the characteristics of
coaches and a listing of through-routed buses, both of which were imported into an Access
database to connect with SandRA data. Local Climatological Data was obtained from the
National Oceanic and Atmospheric Admistration (NOAA) National Data Centers and imported
into the Access database as well.

Specific characteristics to be included on the route level include:

1. Through-routing and length of route pattern — Initial analysis at KCM has shown that
buses which travel through the center of the city and begin another trip without
laying over (waiting for the driver to take a break and get back on schedule) typically
have worse on-time performance. Inis unclear if it is the absence of a layover or
simply the length of route that causes this variability in travel time.

2. Ride Free Area — The lack of the fare collection in the ride free area may cause
transit service arrival times to be less variable, because greater numbers of boarding
passengers would not slow the service down to the same degree.

3. Coach type (articulated vs. standard, low vs. high floor, trolley vs. diesel) — The type
of transit vehicle can impact reliability based on the difficulty in boarding for low or
high floor vehicles, the number of passengers versus doors for articulated (longer
length) or standard vehicles or the type of propulsion and frequency with which
buses are disabled for trolley-wire or diesel buses.

4. Express vs. local route — Express routing (buses which go longer sections without
stopping) versus local routing impacts the stop spacing on portions of a route.
Although this is accounted for in other variables below, this will be tested as a route
characteristic as well.

5. Weather — Severe weather can impact both the underlying vehicular traffic and the
transit service. During snow storms or flooding, many routes are rerouting and lose
their ability to be tracked via KCM AVL. However, moderate amounts of rain or wind
may impact transit travel time reliability and can be tested with the existing system.

Characteristics to be included on the stop level include:

6. Passenger counts and passenger loads (passenger count vs number of seats) — Using
the APC data for the routes and runs available, passenger counts will be taken into
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account. In addition, an analysis of the passenger count compared to the number of
seats on the bus will be taken into account to determine the impact that an
overloaded bus has on travel time variability.

7. Stop spacing and number of stops along route — Transit agencies commonly
consolidate stops to improve travel time on routes because each stop along a route
can take several seconds for acceleration, deceleration and opening and closing of
doors regardless of the number of people boarding and alighting the bus. The
impact of this stop spacing on reliability is unclear. The distance between stops and
the number of stops along a route will both be considered as potential variables.

8. Stop location (near side vs. far side) — The location of stops before an intersection or
after an intersection is a major factor in transit signal priority. However, it is
unknown what the effect of near or far side stop locations will be on travel time
variability.

9. Type of right-of-way (tunnel, HOV, BAT lane) — Giving buses exclusive right-of-way
allows them to travel unimpeded by traffic congestion. Several forms of transit
right-of-way exist within King County, including business-access and transit (BAT)
lanes, high-occupancy vehicle (HOV) lanes and the downtown transit tunnel. The
impact of these varying levels of exclusive right-of-way will be included as a variable.

10. Presence of transit signal priority — The presence of transit signal priority has been
shown to improve travel time and the variability of travel time along severely
congested routes in some cases, however little research has been done to quantify
this impact. In addition, lanes at intersections that allow buses to jump the queue
(move ahead of waiting traffic) can impact reliability. Frequently these measures are
part of a larger bus rapid transit implementation project which includes multiple
travel time improvements which cannot be separated.

The analysis uses data for weekdays during the summer 2008, fall/winter 2008 and
winter/spring 2009 service changes to account for one year worth of transit service. In addition
to variables listed above, the analysis uses control variables for the month, the time-of-day, and
the direction of travel (inbound vs. outbound).

The analysis uses ordinary least squares (OLS) regression models of the form:
y=a+Bixy+ Boxa + Baxz + €

The explanatory variables, x, are those in the list above. The explained variable, y, will be two
measures that look at on-time performance: the difference between actual and scheduled
arrival at a timepoint and the difference between actual and scheduled runtime on a route-
level. The error term, €, accounts for variation in the data that cannot be accounted for using
the explanatory variables, including the three sources of variability for which data cannot be
obtained (driver, fare payment, and underlying vehicular traffic).
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Results

Analysis of Segment-level data

Due to the nature of the AVL system in King County, data is not available on the stop level. For
many purposes, such as vehicle arrival predictions, data is interpolated to the stop level.
However, we only know where the bus is when it passes a timepoint. For this reason, the finest
level of analysis was conducted on the route segment, the distance from one timepoint to
another timepoint. For all of the following analysis, the data was filtered to remove nighttime
time periods, boarding and alightings greater than 50, stops per mile greater than 10 and travel
times along a segment less than 1 minute to remove anomalies in the data that may indicate
errors from the AVL tracking or extremely unusual conditions.

The first series of statistical tests are t-tests for each of the categorical variables comparing the
on-time deviation of the bus at the timepoint. The on-time deviation is measured as:

On-time deviation = Actual Arrival Time — Scheduled Arrival Time

Table 2 Difference of Means Tests by Service Characteristic for On-time Deviation (in minutes)

Mean| Std Dev Observations \ T (p-value) |

Standard 221 4.15 390,875 3.69 (0.002)
Articulated 2.18 4.52 393,906

Low Floor 2.09 4.41 283,604 -15.88 (0.000)
High Floor 2.25 4.30 501,177

Diesel / Hybrid 2.15 4.43 672,425 -22.43(0.000)
Trolley 2.46 3.78 112,356

Local 2.43 4.31 598,074  84.28 (0.000)
Express 1.46 4.37 186,707

Layover 1.86 4.09 666,193 -170 (0.000)
Thru Routed 4.08 5.17 118,588

Few or No Standees 2.15 4.31 766,397 -66.18 (0.000)
Standees > 5 4.29 5.09 18,384

No Service Alert 2.18 4.32 783,110 -51.15 (0.000)
Service Alert 7.62 8.99 1,671

No Weather 2.20 4.34 646,774 2.58 (0.010)
Minor Weather 2.17 4.38 138,007

No or Minor Weather 2.19 4.31 773,750 -12.35(0.000)
Severe Weather 2.70 6.25 11,031

As shown in Table 2, although all of the t-tests show significant differences between the means,
the magnitude of these differences is substantial. For articulated versus standard buses and
minor weather, little difference in the mean values is observed. High floor buses and trolley
buses have a slight negative impact on the mean on-time deviation. Having a bus run express
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improves the mean on-time deviation. Severe weather also has an impact on the mean on-time
deviation. The greatest impact from items under a transit agency’s control are the
improvement from not thru-routing and from running enough service that buses are not
substantially overloaded. Having some sort of service problem, although a rare occurrence, has
the greatest impact of all the variables shown.

Tables 3 and 4 show the mean on-time deviations by time of day and day of week. Clearly, PM
peak into the evening has the worst on-time deviation, as well as days later in the week.

Table 3 Mean On-time Deviations (in minutes) by Time of Day

Mean Standard Error  Observations
AM 1.45 0.008 229,398
Midday 2.24 0.007 326,926
PM 2.88 0.011 229,036
Evening 3.07 0.011 175,481
Night 1.47 0.012 94,387

Table 4 Mean On-time Deviations (in minutes) by Day of Week

Mean Standard Error  Observations
Monday 1.93 0.011 150,618
Tuesday 2.10 0.010 167,509
Wednesday 2.18 0.010 163,812
Thursday 2.33 0.011 151,054
Friday 2.45 0.012 152,367

Figures 2 to 7 show the correlations between the continuous variables and the mean on-time
deviations. As shown in Figure 2, as the stops per mile increase, the mean on-time status
worsens. The relationship between the percentage of HOV and Business Access Transit (BAT)
lanes is not as obvious, with a slight decline in mean on-time deviation with greater exclusive
lanes along a corridor. The relationship with transit signal priority is even worse, although TSP
is not widely implemented in KCM'’s service area, so this could be a function of the limited
number of TSP corridors. In Figure 5, the percentage of farside (versus nearside or mid-block
stops) seems to make no difference in the mean deviation at all. The number of boarding
passengers (ons) does not seem to have a substantial impact until the number is above 40
(Figure 6), at which point the on-time deviation worsens. However, relatively few observations
occur beyond 70 ons, as shown by the very large confidence interval. Similarly, in Figure 7, as
the passenger loads reach numbers above 90, the confidence interval widens due to the
relatively few observations. Prior to this, however, there is a clear relationship between on-
time deviation and passenger load.

Figure 2 Change in Mean On-time Deviations by Stops per Mile
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Figure 5 Change in Mean On-time Deviations by Percent Farside Stops
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Figure 7 Change in Mean On-time Deviations by Rounded Passenger Load
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In order to determine the interaction between these variables and their overall affect on on-
time deviation, an ordinary least squares regression analysis was performed using on-time
deviation as the explained variable. Based on Table 2 to 4 and Figures 2 to 7, highfloor, express,
through routing, standees, service alert, severe weather, percent HOV and BAT lanes, ons,
passenger loads, AM peak period, PM peak period and month and day fixed effects were used
as explanatory variables. Stops per mile and express were very highly correlated and therefore
only express was used, because it was a better predictor. Table 5 shows the results from the
OLS regression on on-time deviations with significant explanatory variables. It is of note that
December and Thursday were the default values and are therefore not included.

Table 5 OLS Regression on On-time Deviations

Coefficient  Standard Er t P>t 95% Conf. Interval

On-time Lag 0.910 0.001 1280.4 0.000 0.909 0.912
Highfloor 0.097 0.006 16.5 0.000 0.086 0.109
Express -0.161 0.007 -23.5 0.000 -0.174  -0.147
Thru Route 0.186 0.008 22.0 0.000 0.170 0.203
Standees 0.276 0.020 14.0 0.000 0.238 0.315
Service Alert 1.492 0.062 24.0 0.000 1.371 1.614
Severe Weather 0.206 0.024 8.5 0.000 0.159 0.253
% HOV/BAT -0.166 0.009 -17.5 0.000 -0.185  -0.148
Ons 0.019 0.000 53.9 0.000 0.019 0.020
Passenger Load 0.008 0.000 36.6 0.000 0.008 0.009
AM -0.017 0.007 -2.5 0.011 -0.030 -0.004
PM 0.269 0.007 39.9 0.000 0.256 0.282
January -0.265 0.015 -18.2 0.000 -0.294  -0.237
February -0.322 0.014 -22.5 0.000 -0.350 -0.294
March -0.364 0.014 -25.9 0.000 -0.392  -0.337
April -0.361 0.015 -24.7 0.000 -0.390 -0.332
May -0.209 0.015 -14.0 0.000 -0.238  -0.180
June -0.194 0.014 -14.0 0.000 -0.221  -0.167
July -0.175 0.015 -12.1 0.000 -0.204  -0.147
August -0.201 0.014 -14.2 0.000 -0.229 -0.173
September -0.121 0.014 -8.5 0.000 -0.149  -0.093
October -0.176 0.014 -12.3 0.000 -0.205  -0.148
November -0.172 0.015 -11.8 0.000 -0.200 -0.143
Monday -0.132 0.009 -14.6 0.000 -0.149 -0.114
Tuesday -0.072 0.009 -8.2 0.000 -0.089  -0.055
Wednesday -0.048 0.009 -5.5 0.000 -0.065 -0.031
Friday 0.021 0.009 2.3 0.021 0.003 0.038
Constant 0.465 0.014 32.3 0.000 0.436 0.493
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F (29, 623840) = 69032 (Prob > F = 0.0000)
R-squared = 0.7492

As shown in the table, the R-squared indicates that about 75% of the variation in on-time
deviation is being explained by the model. The most significant explanatory variable is by far
the lagged on-time deviation. In other words, if a bus is already late at one timepoint, it tends
to be late by a similar amount at the next timepoint. However, in addition to this, all of the
other variables are significant and explain additional deviation in the on-time status. Highfloor
buses, through-routed buses, those with standees, and those operating in severe weather tend
to be delayed more, each accounting for about 6 to 17 seconds of delay per segment. As
expected, express buses and those with HOV or BAT lanes tend to be delayed less, with each
variable accounting for about 10 seconds less delay per segment. Service alerts also increase
the delay, accounting for 1.5 minutes per segment when significant problems occur. The
number of boarding passengers and passengers already on the bus both increase delay,
accounting for about 1 second per boarding and 0.5 seconds per passenger already aboard.

Analysis of Route-level data

In addition to analyzing the data on the timepoint level, a route level analysis may give
additional information about the effect of each characteristic of service. For this analysis, we
have collapsed the data by trip to obtain a travel time for the entire distance of the trip for each
time a bus makes a trip along a route. Table 6 shows the prediction of the actual travel time or
runtime along the route based on the scheduled travel time (ie. runtime) and the same
characteristics as the previous analysis using OLS regression. It is again of note that May and
Friday were the default values and are therefore not included.

As shown in the table, the scheduled runtime is predicting much of the actual runtime, as
should be the case. In addition, high-floor buses add a small amount of runtime at 17 seconds
for the entire trip. Express buses add runtime, about 43 seconds per run, as opposed to the
previous analysis. Through-routed buses add runtime at almost 1 minute per run. Having
standees and severe weather also add runtime, both about 48 seconds per run. In contrast,
articulated buses reduce runtime at about 23 seconds per run. Service alerts are again among
the most influential, adding almost 4 minutes per run. The total number of boardings along the
route added a small amount per boarding at about 1.5 seconds per boarding. Finally, having the
run occur in the PM peak period accounted for another 1 minute of additional runtime. The
percentage of HOV / BAT lanes, passenger loads, and AM peak period were not significant
predictors in this analysis.

17



Table 6 OLS Regression on Actual Travel Time

Coefficient| Standard Err t P>t 95% Conf. Interval |
Scheduled TT 1.076 0.001 959.1  0.000 1.074 1.078
Highfloor 0.278 0.035 8.0  0.000 0.210 0.346
Express 0.721 0.040 17.9  0.000 0.642 0.800
Thru Route 0.923 0.043 21.6  0.000 0.839 1.007
Articulated -0.381 0.035 -10.9 0.000 -0.450 -0.313
Standees 0.788 0.075 10.5  0.000 0.641 0.935
Service Alert 3.730 0.243 153  0.000 3.253 4.207
Severe Weather 0.805 0.121 6.7 0.000 0.568 1.042
Ons 0.026 0.001 33.3  0.000 0.025 0.028
PM 1.026 0.034 30.3 0.000 0.959 1.092
January -0.159 0.081 -20  0.051 -0.319 0.000
February -0.461 0.080 -5.8  0.000 -0.618 -0.304
March -0.661 0.078 -8.4  0.000 -0.815 -0.507
April -0.784 0.079 -9.9  0.000 -0.939 -0.628
June -0.183 0.077 -2.4 0.017 -0.334 -0.032
July -0.194 0.080 -24  0.015 -0.350 -0.038
August -0.149 0.079 -1.9  0.059 -0.303 0.006
September -0.033 0.079 -04  0.674 -0.188 0.122
October -0.204 0.079 -2.6  0.009 -0.358 -0.050
November -0.076 0.081 -0.9 0.349 -0.234 0.083
December 0.874 0.084 10.5  0.000 0.710 1.037
Monday -0.561 0.050 -11.2  0.000 -0.659 -0.463
Tuesday -0.358 0.049 -7.4  0.000 -0.454 -0.262
Wednesday -0.330 0.049 -6.8  0.000 -0.425 -0.234
Thursday -0.187 0.050 -3.8 0.000 -0.284 -0.090
Constant -0.040 0.083 -0.5 0.631 -0.203 0.123

F( 25,139021) =53255 (Prob > F = 0.0000)
R-squared = 0.9055

Conclusions and Recommendations

The underlying goal of this research is to help transit agencies improve the usability of public

transportation by focusing on an aspect of travel that is a key element to the customer,
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reliability. This research has taken into account a number of variables that impact reliability in
transit, as measured by on-time performance and runtime.

Based on this analysis the characteristic of service that has the highest impact on on-time status
and additional runtime beyond scheduled is the presence of some kind of issue with service
that would cause a service alert to be issued within the agency. This shows the importance of
getting information about service alerts out to customers via a variety of means to ensure
riders know that their bus is likely to be delayed.

In terms of policy decisions that agencies can make, the presence of high-floor buses increased
the delays by several seconds per trip segment. Through-routing buses had an even greater
impact, adding almost a minute to the actual runtime beyond that scheduled. Standees on a
bus had a similar negative impact on both on-time status and overall runtime, indicating that
agencies should pay attention to their passenger loads and work to add service along lines that
become severely overloaded to avoid delays.

Interestingly, express buses and the percentage of exclusive lanes in the form of HOV lanes or
Business-Access Transit (BAT) lanes had inconsistent impact on reliability. Although both had a
negative impact on the on-time deviation on the segment level, they were either insignificant
or positive on the runtime level. These substantial investments can significantly impact the
scheduled runtime however, even if they do not substantially impact the difference between
scheduled and actual runtime. By including exclusive lanes, the runtime will be less, which
means transit planners can schedule a shorter travel time for the route. However, the impact
on the variability of the actual runtime was found to be inconsistent in this research. Likewise
other variables which are not included in the regression because they were not significant,
including percentage of TSP or far-side stops may greatly impact the scheduled travel time even
if they do not impact reliability.

Three obvious sources of travel time variablility have not been used in this analysis, including
driver, fare payment (routes with more monthly passes versus those with cash), and underlying
vehicular traffic. These variables either cannot be included for legal reasons or have no reliable
data source to date. Although data about the driver is available, because of union agreements,
it cannot be used for analysis by researchers outside of KCM. The data on fare payment will
improve with time as the ORCA card is phased into service, however at present the method of
fare payment is not accounted for accurately enough to use it in this analysis. Finally, although
researchers are making progress in obtaining underlying traffic data, there are no robust
sources of general traffic volume or speed data on arterials in Seattle available for this project.

The results presented for this analysis have two major caveats. First, there are a large number
of observations in this analysis due to the large number of bus runs which are made throughout
the county on a yearly basis. This large number of observations can have an impact on the t-
tests and f-tests used, making everything seem significant, when in fact a more rigorous
analysis would show that certain variables are not significant. In addition, the variables in this
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analysis represent several levels of variation, those on a route level, those on a trip level and
those on a stop or segment level. For both of these reasons, early consultation with the
statistics department at the University of Washington has indicated that a hierarchical random
effects model that moves beyond ordinary least squares regression is a better approach for this
analysis. The next steps for this study will therefore be to partner with a researcher in the
statistics department to improve upon and verify the results reported here.

By investigating the causes of unreliability in transit, agencies will have the ability to prioritize
improvements to the service. Our hope is that this research will prove useful to King County
Metro and that through publication and presentation of the results, other agencies will be able
to improve the usability of their public transportation systems as well.
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